
TWO-WEEK LOAN PY 

This is a Library Circulating Copy 
which may be borrowed for two weeks, 

a personal retention copy, call 

Tech, Info, Division} Ext. 6782, 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain conect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any wananty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



NUMERICAL MODELING OF TURBULENT FLOW IN A COMBUSTION TUNNEL 

A. F. Ghoniem, A. J. Chorin, and A. K. Oppenheim 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, Californiu 94720 

September 1980 

LBL-11520 





1 

NUMERICAL MODELING OF TURBULENT FLOW IN A COMBUSTION TUNNEL* 

A. F. Ghoniem, A. J. Chorin~ and A. K. Oppenheim 

Lawrence Berkeley Laboratory, University of California 

Berkeley~ CA 94720 

ABSTRACT 

A numerical technique for the analysis of turbulent flow 

associated with combustion is presented, The technique utilizes 

Chorin•s RV~ (Random Vortex Method), an algorithm capable of tracing 

the action of elementary turbulent eddies and their cumulative effects 

without imposing any restriction upon their motion. In the past RVM 

has been used with success to treat non-reacting turbulent flows, 

revealing, in particu·lar, the mechanics of large scale flow patterns, 

the so-called coherent structures. Introduced here is a flame 

propagation algorithm, also developed by Chorin, in conjunction with 

volume sources modeling the mechanical effects of the exothermic 

process of combustion. 

i s a pp l i ed to f l ow 

As an illustration of its use, the technique 

in a combustion tunnel where the flame is 

stabilized by a back-facing step. Solutions for both non-reacting and 

reacting flow fields are obtained, under the restriction of a set of 

most stringent idealizations, mimicking nonetheless quite 
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satisfactorily the essential features of turbulent combustion in a 

1 ean propane~a1 r m·i xture that were observed in the 1 aboratory by means 

of high sp schlieren cinematography. 

* This work was supported by the Engineering, Mathematical, and 
Geosciences Division of the U.S. Department of Energy under contract 
W-7405-ENG-48, and by the National Aeronautics and Space Administration 
under NASA Grant NSG-
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NOMENCLATURE 

A area 

c (T~Tu)/(Tb-Tu)~ reaction progress parameter or reactedness 

d. 
J 

influence factor of a vortex sheet 

f Vb/Vc~ fractional volume of burned medium in a cell 

F ds/dZ, differential transformation function 

h length of a vortex sheet 

side length of a cell 

G the Green 1 S function 

H width of the channel 

k time step 

L reference length 



5 

number of vortex blobs 

number of source blobs 

n unit vector normal to solid boundaries 

p p/ou , non-dimensional pressure 
~ ~co 

p pressure 

r (x,y), position vector 

blob core radius 

R 0 u H/2~, Reynolds number 
~co 

s unit vector tangential to solid walls 

s normal burning velocity 

t time 

t 

T temperature 



u 

u 

v 

v 

w 

x,y 

z 

y 

r 
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(u,v), non-dimensional velocity vector 

non-dimensional velocity component in the x-direction 

inlet velocity 

non-dimensional velocity component in the y-direction 

volume 

u-iv, complex velocity 

non-dimensional Cartesian space coordinates 

X+iy, complex position coordinate in the physical plane 

J ~dy, circulation per unit length 

J ~dA, circulation 

Dirac delta function 

thickness of the numerical shear layer 

source strength 
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local rate of expansion 

complex position coordinate in the transformed plane 

n Gaussian random variable 

dynamic viscosity 

Tb/Tu, temperature, or specific volume ratio 

= ~x~, vorticity 

density 

/2knf, standard deviation 

K equivalence ratio 

velocity potential 

stream function 

Laplacian operator 
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Subscri s 

b burned med i urn 

c cell 

f flame front 

point in space 

j vortex element 

p potential flow produced by u 
~oo 

s source ve I oc ity 

u unburned medium 

produced by combustion 

produced by turbulence 

a due to combustion 

complex conjugate 
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INTRODUCTION 

Numerical analysis of turbulent flow has been traditionally based 

on some form of finite difference treatment of appropriately averaged 

Navier-Stokes equations, supp.lemented by an adequate set of relations 

to correlate the turbulent flow parameters~-the closure model. For 

this purpose it is customary to apply first the Reyno.lds splitting 

principle to all the dependent variables. Each term in the governing 

equations is then appropriately averaged. This may involve either 

time, or ensemble, or Favre mass averaging, depending on whether one 

is seeking a steady state, or a time dependent, or a compressible flow 

solution. Due to the non-linear nature of these equations, double 

correlations of the fluctuating components arise, while the averaging 

process involves essentially an integration, as a consequence of which 

a certain loss of information is ·incurred. The usual way to remedy 

this situation is to introduce a system of relations between these 

correlations and some mean flow parameters--the closure relations. To 

obtain a numerical solution~ a finite difference technique is then 

applied~ yielding the description of the flow field in terms of 

discrete values of its parameters on the nodes of a Eulerian mesh. 

The ACDM (the Averaging-Closure-Differencing Method described 

above) has been used in a multitude of variations, producing 

satisfactory results in good agreement with experimental data for a 

wide assortment of turbulent flow problems. Work in this field has 

been reviewed recently by Me 11 or (1979), MeDon a 1 d (1979), and, with 

particular reference to modern methods based on the use of PDF (the 
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Probability Density Function) 9 by Williams and Libby (1980), 

demonstrating the value of ACDM as a powerful analytic tool for the 

study of turbulent combustion. 

However ACDM is handicapped by a number of drawbacks. Of this, 

the following are particularly relevant to the problem at hand: 

(1) The averaging process deprives the equations of essential 

information about the mechanism of turbulence; this necessitates the 

introduction of turbulence models on heuristic grounds rather than 

obtaining information about them from the solution. 

(2) The turbulence model required for the closure relations has to 

be postulated and the value of its parameters have to be adjusted to 

match experimental data. 

(3) The finite difference technique introduces numerical diffusion 

which tends to smooth out local perturbations, an effect that is 

especially harmful at high Reynolds numbers when regions of 

substantial shear ar-ise in the flow field; the effect of ACDM in this 

respect is to curtail the Reynolds number, causing the 

misrepresentation of some of the most essential features of the flow 

field. 

(4) The effects of exothermic processes of combustion on the flow 

field are particularly difficult to handle by ACDM; as pointed out 

over 5 years ago by Williams ( 1974), these processes cause many~fo 1 d 

increases in specific volume and occur at rates wh<ich are relatively 

so high that taking them properly into account in a finite difference 

scheme is associated with practically insurmountable difficulties. 
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All these drawbacks are especially catered to by RVM (the Random 

Vortex Method) developed by Chorin (1973). This method was des·1gned 

to develop a satisfactory approximation to the solution without 

differencing the equations. Essential features of the flow field 

governed by the Navier-Strokes equations are mimicked by the action of 

vortex elements that model the essential ingredients of turbulence, 

the elementary eddies. Their random walks express the effects of 

diffusion, while compliance with the tangential boundary condition at 

the walls is assured by creation of vorticity in the proper amount. A 

potential flow solution is used at the same t·ime in accordance with 

the principle of fractional steps to guarantee that the normal 

boundary condition is satisfied. 

The RVM keeps track of the position and strength of all the vortex 

elements constituting the flow field and is thus essentially 

grid-less. It is therefore devoid of the smoothing intrinsic to the 

finite difference technique and unaffected by the numerical diffusion 

it introduces. Above all RVM does not involve any averaging 

whatsoever. On the contrary, instead of damping the disturbances, it 

actually introduces a certain amount of randomness, or numerical 

noise, simulating the mechanism of local perturbations in a way 

similar to the one which occurs in real flow. 

Partial convergence proofs for RVM have been provided by Chorin et 

al. (1978) and Hald (1979). In particular, the error in the solution 

was shown to be proportional to the inverse of the square root of the 

Reynolds number, furnishing further evidence of the eminent 



suit ility of RVM to the analy:;is of rbulent f'lows. Its success in 

this respect n amply clemonstr by so·lutions obtained for 

·nows around solid ies (Chorin, 1973; Cheer, 1979), shear layer 

ects 5 /~shurst (1979a, 1979b) and rnal flows. McCracken and 

Peskin (1980). As po·inted out by Roshko (1976L it was indeed 

instrumenta-l in reveal-ing the mechanics scale tu ulence 

patterns, the so~-ca1l 

features as 

"coherent structure~~~ by elucidating such 

·layer me chard srns, processes of eddy shecJd·i 

their growth. intertwinning, and p ring. 

The most prominent aspects of RVM are presented from an 

entirely pragrnati point of view. The algorithm, augmented to 

accommodate the effects of flames, is then applied to the ana·lysis of 

turbulent flow with combustion stabilized in the recirculation zone 

behind a step, 

Salient features of such a now field are displayed ·in Fig, 1, a 

sel ion of cinematographic schlieren records presented by Ganj-i and 

Sawyer (1.979). The large scale vortex pattern characterist-ic of the 

ucoherent structure" is clearly discernible~ while flame front is 

recorded by dark ., loci maximum gradient in refractive index 

reflecting the rapid change in density and temperature due to 

combustion. The records were obtai ned for a propane~ai r mixture at an 

equivalence ratio of 0.57, initial temperature of 295°1< flowing at a 

velocity of ,6 m/sec (Reynolds Number 2,2 x 104) in the in·l 

channel, 2, em vride, ·into a test section 5.08 em wide, and 17.3 ern 

cJeep, There are two sequentia·l series made out of extracts from the 
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same high speed movie. The one on the left shows the process of the 

coalescence of eddies and their intrusion into the recirculation zone 

at time intervals of 1.22 msec between frames. Displayed in the 

column on the right side is the normal formation, and development of 

eddies in the mixing zone at time intervals of 1.16 msec. 

The analysis is restricted by a formidable array of simplify·ing 

idealizations. However, it should be stressed, this is not tantamount 

to restrictions of the RVM itself. The principal raison d1 etre for 

our idealizations is simplicity. As for the first practical 

application of a new method to combustion, it is indeed obvious that 

the simplest case is most appropriate. It serves as the point of 

departure for the treatment of more complicated situations and 

moreover simplicity has a definite bearing on the economy of 

computation. The techniques we can develop on the basis of the simple 

case should be of benefit to future work on more involved problems. 
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PROBLEM 

According to the arguments prescribed 

problem we treat is formulated on the 

idea·l i zations: 

in the Introduction, the 

basis of the following 

(1) the f"low is two~dimensional i.e., strictly planar; 

(2) the flovdng substance consi s on·!y of two incompressible 

media, the unburned mixture and the burned gas; 

(3) the flame is treated as a constant pressure deflagration 

acting as a.n interface between the two media, and propagating 

locally a prescribed normal burning velocity; 

(4) the exothermicity of combustion is manifested entirely by an 

increase in ific volume associated with the 

transformat·ion of one component medium into the other. 

Thus completely neglected are, respectively, the following 

physical phenomena: 

(1) three-dimensional effects, in particular vortex stretching; 

(2) compressibility effects, in particular acoustic wave 

interactions; 

(3) chemical kinetic effects and molecular diffusion, in 

particular the f"lame structure. as well as the ·influence of 

the state and composition of reactants on Hs propagation 

velocity; 

(4) thermal effects, in particular all the thermodynamic 

properties of the substance and the heat transfer processes. 
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It should be noted that the above is consistent with the well 

known model of thin flame, or infinitely fast kinetics, used widely 

for the analysis of mixed controlled turbulent combustion, 

As a consequence of these idealizations, the continuity and the 

Navier~Stokes equations governing the flow field can be expressed in 

the following simple form: 

Y·~ = d.cf) 

Du 
R~1v 2 u - v Dt = - _p 

(1) 

( 2) 

where u = (u,v) is the velocity vector normalized by the inlet 

velocity ~' E is the corresponding local rate of expansion, 

! = (x,y) is the position vector normalized by h' the reference 

length, t ~ the time normalized by L/u , R - the Reynolds Number and 
~ ~oo 

- the pressure normalized by pu ,p denoting the reference density 
-oo 

of the medium, subscript f refers to the flame front, while 

D
Dt .L + u·V at - -

is the substantial derivative, v2 ~ the Laplacian and V is the 

usual del or nabla operator, 

The flow field is specified by the solution of these equations, 

subject to the boundary conditions 
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u = 0 along all solid boundaries (3) 

u "' (1,0) at inlet (4) 

The distribution of c is determined by the location of the flame 

frong, Lt , which is governed by the flame propagation equation 

( 5) 

where Su is the normal burning velocity, while ~f is the unit 

vector normal to the flame surface. 
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PROCEDURE 

The procedure is based on the principle of fractional steps (viz. 

e.g., Lie, 1889; Samarski, 1962) according to which the governing 

equations are split into a sum of elementary components and the 

solution is determined by treating these components in succession. 

The essential element used for this purpose is the vorticity 

~=IJXU (6) 

which is introduced by expressing Eq. (2) in terms of its curl, the 

vortex transport equation, 

( 7) 

while, it should be recalled, '!_ x '!_p = 0. 

The flow is thus described by Eqs. (1), (6) and (7). 

Equation (1) and (6) are used to determine the velocity 

field, ~(!:_L while, in accordance with the principal feature of RVM, 

Eq. (7) is employed to update the vorticity field, ~(x,y). 

Then E(x,y) is determined by the flame propagation algorithm we 

developed for the solution of Eq. (5). 

Thus u is decomposed into a divergence free vector 

field ~~ and a curl free field ~E where 

( 8) 

In doing this we exploit the Hodge decomposition theorem (viz. 

Batchelor, 1969; Chorin and Marsden, 1979). The governing equations 
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for~ and u are then obtained immediately by the substitution 
'? -£ 

of E q , ( 8 ) i n E q s , (1 ) and ( 6 ) . 

and 

V·~~ ~ 0 

yx.~ ~ 

vxu 0 - --s 

( 9) 

(10) 

( 11) 

(12) 

Both u and ~ are required to satisfy to zero normal velocity 

boundary condition independently, namely 

u •n -!; ~ "" 0 (13) 

u •n 0 
o-£ 

(14) 

where n is the unit vector normal to the walls. 

However~ only the total velocity, ~, is required to satisfy the 

no~slip condition 

u•s 0 (15) 

where s is the unit vector tangent to the walls, 
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The structure of the algorithm is described schematically in form 

of a block diagram in Fig. 2. There are two loops, one for handling 

vortex and the other for flame propagation. These are 

linked together to yield the total velocity field. Key elements in 

the first loop are vortices, transported by diffusion and convection, 

the fractional steps of Eq. (7), Key elements in the second loop are 

vo 1 ume sources, monitored by advection and combustion, the fraction a 1 

steps of Eq. (5), 
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VORTEX DYNAMICS 

The mechanism of turbulence is described in essence by vortex 

dynamics. This process is evaluated here by first determining the 

ve1ocity field ~ • that is produced by a given vorticity distribution, 

(x,y), according to Eqs, (9) and (10) with the zero normal velocity 

boundary condition, Eq. (13), and then updating the vorticity field in 

accordance with the vortex transport equation, Eq. (7), implementing 

at the same time the no-slip boundary condition, Eq, (15), 

As the principal feature of RVM, the flow field is expressed for 

this purpose in terms of discrete elements. the so-called vortex blobs 

and vortex sheets. Their properties are presented here in turn, 

(a) Vortex Blobs 

In order to derive the properties of vortex blobs, Eq. (10) is 

expressed in terms of the stream funct-ion, 

where 

v alJ! 
ax 

so that Eq, (9) is satisfied exact-ly. 

The velocity is then described in terms of 

~-=f-o(r-r.) 
J J - -J 

( 1.1) 

( L 2) 

(1.3) 
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where o is the Dirac delta function and 

r. = Lim 
J 11Aj.,.o 

J ~j dA 
11A . 

J ., 

is the circulation of a vortex ar !:.j' while 

(1.4) 

is acting on area 

11Aj. The solution of Eq. (1.1) is expressed by the Green 1 S function 

r. 
G(r,r.) = ~2J logJr- r. I 

- -J 'IT - -J 
(1.5) 

representing the field of a potential vortex. 

Equation (1.5) can then be used to construct a solution to Eq. 

(1.1) for a general distribution of ~ in the form 

~(x,y) = JA G(!:_,!:_j) ~(.Cj) dA ( 1.6) 

where A is the area of the flow field. The above integral can be 

evaluated as a sum of all the contributions of~, after it had been 

partitioned into discrete elements ~j· The elementary vorticity, 

~j• is a function of small support that tends to a delta function as 

the area where it exists, 11Aj, approaches zero. This process 

requires smoothing of the function in Eq. (1.5) to eliminate the 

singularity at its center (Chorin, 1973). Thus, the integral in Eq. 

(1.6) becomes 

~ "' I G. r. 
. J J 
J 

( 1. 7) 



in which case 

r. ""J ~· J !J.A. J 
J 

!J.A. 
J 

is fini ile is smooth 

~s ion n, d ~ 1980) • 

el flow fi d ifi • (1.7) 

is led a vortex blob. volici 

ace~ i.e., one without boundaries~ is 

f 1d it produces in 

ained by substitu Eq. 

{1.5) i Eq. (1.2) i ng G around this 

pu ose is ~'llr i ~ using complex variables~ as follows: 

(1.8) 

~<J "" u iv9 "' vCT5 z = X + wh·i le is the cut-off 

ius, Le., us core within whi I~ I is con 

in compliance with the smoothing i rement for the function 

ssed by (1.5). velocity dis but ion of a b'lob is 

displayed in Fig. 3. 

In order to sfy ndary condition given by . ( ) we 

use conformal rnappi ansform the flow fi d into the 

f ~;~plane, and velocity prod by the image of 

vortex corresponding velocity field in the £;;~plane produced 

by a vortex blob 1;. is thus given by 
J 
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(1.9) 

where W~(~.~j) is given by Eq. (1.8). 

The boundary condition of Eq. (4) is taken care of by the 

velocity Wp(~) of the potential flow produced by a unit velocity 

at the in 1 et. The tot a 1 ve 1 oc ity produced by a set of Jb vortex 

blobs, including the effect of flow at the in<iet, is thus 

Jb 

W~(~) = Wp(~) + I W~(~.~j) 
j:1 

(1.10) 

To deduce the solution in the physical domain, the Z~plane, one 

applies then the Schwarz~Christoffel theorem to specify the 

differential of the transform function 

~~ = F(~) (1.11) 

for a given geometry of the flow field. Since then 

W(Z) = W(~) F(s) (1.12) 

the velocity vector, %• in Eq. (8) is thus determined. 

The vorticity, ~(x,y). is updated at every computational time 

step, k, by solving Eq. (7) in fractional steps made up of the 

contribution of the convention operator 

0/; 
Dt = O (1.13) 

and that of the diffusion operator 
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According to Eq. (1.13), vortex blobs move at appropriate particle 

velocity specified by Eq. (8). 

The solution corresponding to a time step, k, of a one~dimensional 

component of the diffusion equation, Eq. (1.14)~ when the initial 

condition is given by the Dirac delta function, o(O), is the Green's 

function 

( 4nk)-
112 

( Rx
2

) G(x,k) ~ ~-- exp - ~ ( 1.15) 

This is the probability density function of a Gaussian random 

variable with zero mean and a standard deviation of cr = l2k/R ! Thus, 

if the initial vorticity is split into a set of discrete vortex 

elements and each of them is given a displacement from the origin by 

an amount drawn from a set of Gaussian random numbers of an 

appropriate variance, it provides an approximat·ion to Eq. (1.15) by 

sampling. When a general distribution of vorticity ~(x) is given, 

the exact solution after time k of Eq. (30) is 

y ( x) ~ J A G ( x-x 1 
, k ) ~ ( x 1 

) dx 1 
( 1. 16) 

where y denotes the ci rcul at ion per unit length, whi 1 e G is given 

by Eq. (1.15). The probabilistic counterpart of this solution is 

obtai ned by displacing eact1 vortex element from its 

position X1 through a distance The random walk is then 

constructed by repeating this procedure at each time step. 
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Two~dimensional random walk is treated in essentially the same way, 

the vortex elements being moved in two normal directions x andy, by 

two independent Gaussian random variables with zero mean and a 

standard deviation of cr = IZk/R. 

The convection and diffusion contributions in the Z-plane are 

combined, according to Eq. (7) by the summation 

where W = W~ + WE and nj = 

using its transform 

n + 
X 

or, 

~.(t + k) = ~.(t) + W(i:;;.) F(~.) F(i:;;.)k + n.F(i:;;.) 
1 J J ,] ,] J J 

(1. 17) 

in the ~-plane by 

( 1,18) 

Since the velocity is calculated in the ?;-plane by implementing Eq. 

(1.10) the use of Eq. (1.18) is more straightforward and hence more 

economical then that of Eq. (1.17). 

To satisfy the no-slip boundary condition expressed by Eq. (3), 

the velocity, W, has to be calculated at a number of points along the 

wall. The points are selected to be a distance h apart along each 

wall. Wherever the tangential velocity uw at wall is not zero, a 

vortex with a circulation uwh is created and included in the 

computations at the next time step, according to Eq. (1.17) or Eq. 

(1.18). However, this procedure of vorticity creation is not accurate 

since on the average one half of the newly created blobs is lost 

through diffusion across the wall. This implies that Kelvin 1 s theorem 
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not ·i ed ex a 1y the accuracy near the ~tJa 1 ·1 is poor, 

Furthermore, vortex b·lo do not prov·i a good scription of the 

now neclr so "l"ld wans where ve loci ients are very rdgh, because 

insi the core of a blob the velocity is considered to bE: constant. 

This motiv the introduction of vortex sheets to take up the role 

of blobs in layers at walls. 

(b) Vortex S s 

If we take x to be the direction along a wall and y the normal 

to it, tlle followi two conditions are known to prevan in the s 

·1 ayer immed i ·ly adjacent to it: 

L av/ax « au/ay (1.19) 

2. ffusion in the x-direction is negligibly srnal1 in 

comparison to convention in this direction. 

A vortex e·lernent constructed on the bas·is of these condit·ions is 

referred to as the vortex sheet. 

As a consequence of Eq. (1.19), Eq. (10) ·is reduced to 

au 
ay {1.20) 

The above 9 in conjunct·ion with Eq. (9), determines ~t;(!:) as fonows. 

Integrating Eq. (1.20) from y "" os, the outer ge of the numerical 

at the wall, to y1, one obtains, 

where u
8 

is u at y = ,. 
"s' 

(1.21) 
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The above integral can be transformed into a summation by 

partitioning the value of ~ along y and defining the C"irculation of 

a vortex sheet per unit length as 

y. =Lim 
J b.y:,.O 

( 1. 22) 

If a sheet has a length h, then its circulation, rj, is 

r. = h y. (1.23} 
J J 

and from Eqs. (1.21) and (1.22) the velocity jump across it, t1uj, 

per unit sheet length is 

L:IU • = y . 
J J 

( 1. 24) 

Unlike the 11 elliptic 11 flow modeled by vortex blobs, where the 

effect of each blob extends throughout the field, as a consequence of 

Eq. (1.21) the zone of innuence of a vortex sheet is restricted to 

the 11 Shadow" below it, as indicated by the regions marked by 

right~hand slants in Fig. 4. Thus, the flow velocity at a point 

(x;,Y;), where Y; < Yj is determined by the relation 

u(x.,y.) 
1 l 

= u (x.) ~ L y .d . 
0 1 j J J 

( 1. 25) 

a summation counterpart of Eq. (1.21) according to Eqs. (1.22) and 

(1.24) while 
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is the influence of sheet j on point i, expressing the fraction 

Hs length extending over the zone of dependence over point i, 

"indk by ·left~hand slants in Fig. 4. 

value of v is determined by the integration of the expression 

v r
.Y i 

u dy 
) 

0 

(1.26) 

obtai ned from (9) using u(x;,Y;) as evaluated from Eq, 

( L 24), 

For th"iS 

y. 

I ~, J 
1 

u dy 

0 

one i ntroducE::s 

u(xi) Y; ~ t y du 

0 

~ u(x.) y. ~). y.d.y. 
1 1 ~ J J J 

(1.27) 

j 

where, taking advantage of Eq. (1.24), au has been replaced by 

yjdj. In finite difference form, Eq. (1.26) becomes then 

v(x .. v.) 
'l -~ 1 

+ 
I ·- 1 

where, according to Eq. (1.27), using Eq. (1.25) for u(X 1), 

vvh i l e, as in d k a ted in Fig. 4. 

(1.28) 

(1.29) 
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and 

The motion of the sheets is governed by an equation identical to 

Eq. (1.17), but with!::!_ evaluated from Eq. (1.25) and Eq. (1.29) while 

n; = 0 + iny' in accordance with condition (2) stated at the 

beginning of this section. To make sure that the motion of a vortex 

sheet is matched with the vortex blob it can generate, a correction 

term has to be added to Eq. (1.25) in order to account for the effect 

of the image of the blob. According to Chorin (1978), this is equal 

to -1/2 yj. A number of techniques to reduce the statist-ical error 

and speed up the convergence of the vortex sheet algorithm has been 

suggested by Chorin (1978). 

(c) A 1 gor ithm 

The above concepts are implemented as follows: 

First the value of h, the sheet length specifying the spatial 

resolution, is chosen. The value of the time step, k, is then fixed 

in accordance with the Courant stability condition, k < h/max u 

(Chorin, 1980a). For a given Reynolds number, this specifies the 

standard dev·iation a. The thickness of the numerical shear layer os 

is then taken as a multiple of a whereby, as shown in Fig. 5, the ·loss 

of vortex blobs due to their random walk is minimized. Finally, the 

number of sheets initia"lly in the stack is chosen, limiting the 

maximum allowable value for y. 
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At time zero on"ly the incoming flow up(z;;) exists. The resulting 

ve loci along the wan is fixed by the potential flow so·iution Eq. 

( L 1). di lacernent of s i n the n u mer i cal she a r l is 

trlen calcul , using Eq. (1.17) with velocity specified by Eq. 

(L25) and Eq. (1.28). The various possibilities that may occur due 

to vor di lacement are illustrated in Fig. 5. When a sheet 

gets out of the boundary 1 ayer, it becomes a b 1 ob with a tot a 1 

circul ion adjusted according to Eq. (1. ). 

The core radius. r
0

, is then fixed in such a way that the 

no~slip boundary condition is satisfied. To do so with a m"inirnum 

error, one sets r
0 

> 0
5

• The ve"locity at the wall produced by 

image is then, in accordance with Eq. (1.9), 

r 

whence, by virtue of Eq. (1.23) and (1.24) with auj - u
0

, 

h 
'If 

(1.30) 

provid"ing an explicit re·lation between the length of the vortex sheet 

and the core radius of a vortex blob. 

If a sheet gets out on the other side of the wall, it becomes 

restored by mirror image either in the shear 1 ayer as a sheet or 

in the flow field as a blob, as depicted in Fig. 5. 
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Corresponding displacements of vortex blobs are calculated by the 

use of Eq, (1.18) with their velocities evaluated from Eq. (1.10), 

Again, Fig. 5 displays the various ways in which a blob can be 

transformed into a sheet, The last possibility of losing a vortex 

blob is minimized by the right choice of os, as already pointed out, 

Once the position and strength of both the sheets and blobs are 

established, the flow field at a given time step is fully 

determined. It should be noted that vortex blobs appear only as a 

consequence of the displacement of vortex sheets outside the boundary 

layer, modeling the mechanism of the generation of turbulence under 

actual flow conditions. 

(d) Results 

The Z-plane and c;;-plane for flow over a rearward facing step are 

presented in Fig. 6. The functions WP and F are 

(1.31) 

and 

1/2 
F(c;;) = nc;; (~) H c;; - 1 (1.32) 

where, as shown in Fig. 6, His the height of the channel. 

The results of computations for turbulent flow behind a step of 

the same geometrical proportions as Fig, 1, corresponding to Reynolds 

Number of 104 at inlet, or for 2.54 em width of the channel in the 
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exper·imental a.ppar us, !d "~ 6 m/sec, are sflown in Fig, 7, Included 

are sequenti a I series of computer outpu The one on the 

left deve ·lopment of the f l mv f·i e 1 d by presenting vortex 

velocity vector fields tracing motion of all the vortex blobs 

included ·in solution at successive time ·interva-ls, each equal to 

50 computational steps 0,1 H/2 u sec The one on the right shows 
~· CX! 

owth of a large scale dy traced at time in 

comput ional ste 

A velocity vector is represented there, as usual, by a line 

segment providing information on its magnitude and direction, 

However 9 instead of being furnished with the conventional arrowhead, 

it is attached at its origin to a small circle denoting the locat-ion 

of the vortex blob to which it pertains, 
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FLAME PROPAGATION 

According to Idealization 3, the flame front is treated as an 

interface across which reactants are transformed into products at a 

rate controlled by the normal burning velocity. The method used for 

tracing the motion of such an interface was developed by Chorin (1980) 

and implemented with the he 1 p of the algorithm of Noh and Woodward 

(1976). 

The flow field is divided for this purpose by a grid of mesh size, 

he, into square cells. The fraction of volume, V, occupied in a 

given cell by the burned medium is expressed in terms of a number 

( 2 .1) 

It is easy to show that 

f :::: (2.2) 

where p is the density, while subscripts c, u, and b, refer, 

respectively, to the property of the medium in the cell, the unburned 

med i urn, and the burned med i urn. 

Since, by reason of Idealization 3, the flame is treated as a 

constant pressure deflagration, f can be expressed in terms of the 

usual reaction progress parameter 
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( 2. 3) 

where 

(2.4) 

while T can be considered to represent either absolute temperature 

(if the change in molecular weight is negligible) or temperature 

divided by the molecular weight. 

Thus, with the use of the perfect gas equation of state, Eqs. 

(2.2), (2.3) and (2.4) yield 

f- ~\i_C~-
~ r+ (\1 - 1) c (2.5a) 

whence 

(2.5b) 

specifying, in effect, the temperature distribution, for, as a 

consequence of Idealization 2, \1 = const. throughout the flow field. 

Thus, f = 0 or 1 means that there is, respectively, either 

unburned or burned medium "in the cell, while fractiona·l values of f 

"indicate cells containing the interface. Its particular geometry is 
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deduced, depending on the f numbers in neighboring cells. In this 

connection, as illustrated in Fig. 8, proper provisions are included 

in the algorithm for four possibilities: 

(a) vertical interface 

{b) horizontal interface 

(c) rectangular corner 

(d) neck 

As a consequence, the interface is made up of hori zonta 1 and vertic a 1 

line segments, yielding higher spatial resolution than he, the mesh 

size of the grid. 

The motion of the interface, or flame propagation, is described by 

Eq. (5). By virtue of the principle of fractional steps, its effects 

are split into two components: 

(a) advection, prescribed by 

(2.6) 

(b) combustion, prescribed by 

(2.7) 

providing proper set-up for the inclusion of the effects of 

(c) exothermicity 
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Algorithms for each of these processes are presented here in sequence. 

(a) Advection 

The advection step is the passive displacement due to the velocity 

field. It is evaluated by calculating first the velocity components 

at mid~poh1ts on the sides of the cell, as shown in Fig. 9. The 

·interface is then transported in two fractional steps, one horizontal 

and one vertical, changing the f~number of the cell by an amount 

proportional to corresponding disp"lacements in time step, kc. The 

algorithm is stable whenever the Courant condition, kc ~ hc/maxl~l. 

is satisfied (viz. Noh and Woodward, 1976). 

(b) Combustion 

The combustion step is the advancement of the front due to 

consumption of the unburned medium. The front moves in the dir~ection 

of its normal with a relative velocity taken here as a constant, equal 

to the appropriate laminar burning velocity of the mixture, Su. The 

corresponding motion of the interface is evaluated by the 

implementation of the Huygensj principle using the advection 

algorithm. At the nth computational step one calcu·lates for this 

purpose the displacements due to Su in eight direct·ions: The four 

sides and four corners of each cell, so that all of its neighbors are 

affected, For a g i v en cell at ( i , j ) t h i s res u 1t s i n e i g h t n ew 

f~numbers. The value assigned to it is then: 

(2.9) 
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where • , 8, while It should be noted 

that the algorithm provides in effect information on the displacement 

of the interface due to its motion at a given velocity normal to its 

frontal surface, without having to determine its actual direction 

(viz. Chorin, 1980). 

(c) Exothermic i 

Mechanical effects of the exothermic process are manifested by 

volumetric expansion behind the flame front, The velocity field 

induced thereby is governed by Eqs. (11) and (12) and Eq. (14), 

As in the case of vortex blobs, Eq. (11) and (12) are solved by 

superposition. A velocity potential, ~. is introduced for this 

purpose, so that 

u = ~ ax v = ~ ay 

satisfying exactly Eq. (12). The governing equation for¢, 

(2.10) 

1J 
2

1/J = E (2.11) 

is obtained then immediately by the substitution of Eq. (2.9) into Eq. 

( 11). 

The solution of this equation is given by 

( 2 .12) 

where 



G r I ) 
1 l.r. ~ .!: 1 I "" 

is s s ion. 

ng re used i (1.6) ~ the 

solution of 0 (2.12) is imated by summation 

(2.13) 

(2.14) 

while llj is the source strength, the rate of volumetric expansion it 

induces, while rsj is the Dirac delta function. As before, in order 

for the summation to converge, the Green 1 S function is smoothed around 

The concept of a source blob is that ved in analogy to a 

vortex blob. The velocity field produced by a source blob is, in 

ect, same as that in Fig. 3. Thus, the velocity produced in a 

space by a source blob at Zj is 

(2.15) 

The boundary condition expressed by Eq. (14), are satisfied by 

adding the velocity produced by image each source on the other 
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side of the wall. Thus the total velocity produced by a source blob 

in the (~plane is given by 

(2.16) 

For J
5 

source blobs, the solution of Eq. (2.12) is then approximated 

by the summation of the integral in Eq. (2.13) and the corresponding 

flow velocity is 

w ((,(.) 
E: J 

(2.17) 

The strength of the source is adjusted so as to pro vi de for the 

volumetric expansion specified by b.j (viz. Eq. (2.14)) preserving 

mass. In one-dimensional flow, as depicted in Fig. 10, 

(2,18) 

where Sb is the flame speed as seen from the burned side and Su 

is the flame speed seen from the burned side, whence, as a consequence 

of the continuity requirement, 

(2.19) 

where 
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one has 

The source strength is then 

while the volumetric rate of combustion is given by 

dV
0

. 

h s dt ~ "" c u 

(2,20) 

(2.21) 

(2.22) 

vJhere df /dt is the rate of change in f due solely to combustion, 
cr 

This yields: 

df 
cr (2.23) 

At the same time, with reference to Fig. 3, the source velocity is 

identified with the velocity of the core 

(2.24) 

so that, as a consequence of Eq, ( 2. 20), one obtains 
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(2.25) 

Thus, by virtue of Eq. (2.23), it follows that 

where the time derivative of f has been expressed in terms of the 

change in f evaluated for a given time step, kc, by the 

implementation of the Huygen's principle. 

By virtue of Eq. (8), volumetric sources affect the velocity 

field. In particular, they modify the value of u. This in turn 

induces changes in the sheet velocities, as evident from Eqs. (1.25) 

and (1.28), giving rise to new vortex blobs, etc. The whole algorithm 

is thus interrelated, as described schematically in Fig. 3. 

(d) Results 

With the use of RVM a solution was obtained for turbulent flow 

with combustion in the tunnel behind a step, modeling the process 

recorded photographically in Fig. 1. The exothermicity of the 

propane~air mixture, with equivalence ratio K = 0.5 used then, was for 

this purpose expressed in terms of the temperature (or specific 

volume) ratio v = 4.25, the laminar burning velocity was taken as 

~u = 12 em/sec, while, as before, the velocity at inlet was ~co = 6 

m/sec corresponding toR= 104. 

An example of the results is presented in Fig. 11. As Fig. 7, it 

consists of two sequential series of computer outputs, depicting the 
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variation of vortex velocity vector fields and name fronts. The 

flame contour has been delineated for this purpose as a line of 

demarcation between cells where f = 0 and those where f > 0. The 

sequence in the left co·lumn depicts the process of ignition in the 

turbulent now field of Fig. 7 in a cell located at point (1,1) i.e., 

on the center line of the tunnel at a disance from the step equal to 

the width of th,e inlet channel. The sequence in the r·ight column 

displays the "steady flow condition 11 attained at time t = 26.102 

(H/2u ) sec. following ignition at the left bottom corner, point 
""" 

(0,0), initiated at the moment when the medium was set in motion 

(hence smaller number of vortex blobs). The number of computational 

time steps 0.05 H/2u sec., between the solutions displayed here was 
~oo 

40 for the left column and 4 for the right. 

Considering the stringent idealizations on which the computat·ions 

are based, the agreement between the numerica·l model and the 

experimental observations is indeed remarkable. The RVM is evidently 

capable of reproducing the essential features of the flow field 

associated with turbulent combustion as observed by schlieren 

photography, providing thereby a clarification of the essential 

mechanism of the process. At this stage one cannot expect, of course, 

more than a qualitative agreement. A quantitative modeling of 

stochastic turbulent flo\fJ parameters has to be left for future study. 
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CONCLUSIONS 

Demonstrated here was the eminent suitability of RVM for the study 

of the fluid mechanic properties of turbulent combustion, The main 

advantage of the method is that it is unencumbered by numerical 

diffusion, Thus, all the instabilities in the flow field, that arise 

as a characteristic feature of turbulence, can be sustained without 

any artificial damping, permitting their effects to be traced without 

undue distortion, Moreover, by using as the building block the 

mechanical properties of the essential ingredient of turbulence, the 

elementary eddy, RVM is capable of modeling the intrinsic physical 

properties of the flow system, subject only to restrictions introduced 

at the outset by the simplifying idealizations. 

As a consequence, the analysis we presented di sp 1 ayed the 

following features of turbulent combustion: 

L fluid mechanical processes of the formation of large scale 

turbulent flow structure, 

2, rationale for the role played by the intrinsic instability of 

the flow system in stabilizing the flame~-the basic mechanism of a 

blunt body flame holder~ 

3, fluid mechanical processes of ignition in turbulent flow of 

premixed gases~ 

4. detailed features of entrainment and mixing as principle means 

for the control of the combustion process, 

5, the mechanism of exothermic processes in turbulent combustion, 
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APPENDIX I 

VORTEX MOTION IN THE TRANSFORMED PLANE 

Trajectories of the vortices in the transformed ~-plane are 

required in order to evaluate the velocity W(Z) using Eq. (1.10) and 

Eq. (1.12). This can be obtained by a stepwise conformal mapping of 

trajectories in the Z-plane~ defined by Eq. (1.17), using the inverse 

of the transformation function Z = Z( ~)~ the integral form of 

Eq. (1.11) 

Z(s) = J ~ 
F ( i:;) 

which 9 for the geometry of Fig. 6 is 

z = .!:! ilog 1 + q - ~ log i + q ( 
1f ~ r:-q c. -qJ 

where 

However, the inverse of the above 

( 1.1) 

(I.1a) 

~ = ~;;(Z) (1.2) 

is awkward and lengthy to evaluate. Hence one has to resort to 

numerical methods to integrate Eq. (1.11) directly in order to 

calculate corresponding displacements in the ~;;-plane of those in the 

Z-plane. 
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This procedure can be reduced substantially if one uses Eq. (1.18) 

to trace these vortices in the r;;~plane directly, thus eliminating the 

use of the Z~plane except for the presentation of the results. This 

equation is obtained from Eq. (1.12) to write W(Z) in terms of r;; as 

(I. 3) 

If s(t) is defined to be the map of Z(t), then 

t:(t) ~ t;;(Z(t)) ( L4) 

and one can wr i te 

t;;(t + k) ~ r;;(t) = t;;(Z(t + k)) - r;;(Z(t)) 

or, taking the first term of the Taylor series expansion, 

r;;(t + k) - r;;(t) = {z(t + k) - z(t)} ~t (I. 5} 

If Z is a vortex center, then Eq. (1.17) specifies the change in 

Zj. Using Eq. (I.3), Eq. (1.11) and rearranging one obtains Eq. 

( 1.18) as 

(I. 6) 



47 

Eq. (!.6)~ along with Eq. (1.10) provide all the necessary information 

about the flow fie.ld. It is of interest to note that the effect of 

the geometry of the Z~plane on the motion in the c;>plane is preserved 

in terms of F and F in Eq. (I.6). 
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APPENDIX II 

DERIVATION OF EQUATION (2.23) 

The total vo'lume created by a set of sources distributed on the 

surface of a flame should provide for the extra volume on the side of 

products due to the expansion of reactants as they burn. If the fluid 

leaves a source with a ve'locity us normal to the surface of the 

fl arne, then 

dV J 
crt"' f 

(II.l) 

where dV/dt "" rate of volume increase due to the sources and Af 

a rea of the f1 arne surf ace. For two dimensional flow. dAf ~ 

~fdlf where Lf is the length of the fl arne front and both V and 

Af are measured per unit lengtn normal to the plane of the flow. 

Since us is constant for homogeneous systems as indicated by Eq. 

(2.18), it follows that 

(I L2) 

The propagation of the flame due to combustion, the reason of 

volume expansion, is expressed by the left hand side of Eq. (5), 

ar 

a "' nfS ~ u (II.3) 
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When integrating the above equation of the flame surface Af, it 

specifies the rate of volume combustion as 

(II.4) 

The left hand side of this equation can be written as 

dVb - f 
dt - f a (II.5) 

and j cover the whole flow area and the flow is assumed two 

dimensional. The integral in the right hand side of Eq. (II.4) is 

evaluated by assuming a constant Su, yielding a similar expression 

as that of Eq. (II.2). Thus Eq. (II.4) becomes 

One can \1\fr ite 

dV 1 
-::rr= L !J. .. 
u !- • . lJ 

1 9 J 

and by eliminating Lf between Eq. (II.6) and Eq. (2) it follows that 

(II.7) 
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HovJever, from Eq, (2.18) and Eq. (2.19), one has 

and Eq. (2.23) follows immediately. By using Eq. (II.7), one avoids 

ca"lculating the flame length as required by Eq. (IL2). Instead one 

uses the computations of the combustion step in the flame propagat·ion 

algorithm, described before, to obtain the rate of conversion of 

reactant 1 s vo·lume due to combustion as indicated in Eq. (IL5). 
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APPENDIX III 

CONSERVATION OF CIRCULATION IN A VARIABLE DENSITY FIELD 

The flame front, according to the model presented here, is a 

constant pressure discontinuity across which a sudden change in 

density occurs, In the following finite vortices, or vortex blobs, 

are found to conserve their circulation upon crossing this 

discontinuity. The proof is limited to two~dimensional situations. 

In a two dimensional potential flow. with variable density, the 

vortex transport equation, (Eq. (2.6) in Chorin and Marsden 1979). 

0 
Tit (~I p) = 0 (III.l) 

expresses the variation of vorticity with density along a particle 

path. However, the variation of the circulation, given by 

or o J o J . Dt "'Tit ~dA ""Tit (E)p) pdA (III.2) 

can be calculated by reversing the integration and differentiation in 

the above expression as 

~f = J ~t (~/p) pdA + J ~/p ~t (pdA) (III.3) 

However, pdA = constant along a particle path and, taking Eq. (IILl) 

into account. 
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(III.4) 

Thus, since vortex blobs follow particle paths, their circulation in a 

variable density field ·is invariant, 
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FIGURE CAPTIONS 

Fig. 1. Cinematographic schlieren records of turbulent combustion 

stabilized behind a step in a propane~air mixture at an 

equivalence ratio K ""0.57 9 entering the channel at u = 
~()() 

13.6 m/sec (Re = 22 x 104) while T ::::: 295"K (from Sawyer 
00 

and Ganji, 1980). 

(a) growth of a large eddy under the influence of 

recirculation (time interva·l between frames: 1.22 

msec). 

(b) 11 Steady state 11 propagation of large scale 

(
11 coherent") structure (time interval between frames: 

1.16 msec) • 

Fig. 2. Structure of the algorithm. 

Fig. 3. Velocity distribution of a blob. 

Fig. 4. Geometry of interdependence in the numerical shear ·layer 

A ~ zone of dependence over point 

B ~ zone of influence under sheet j 

C ~ zone of dependence around point + 1/2 

D ~ zone of dependence around point i - 1/2 

Fig. 5. Transformations of vortex elements in and around a numerical 

shear layer at the wall. 

Fig. 6. Streamlines pattern of initial flow in transformed plane and 

physical plane of a channel with a step expansion. 



57 

Fig. 7. Sequential series of computer plots displaying vortex 

velocity fields in turbulent flow behind a step at inlet R = 

104. 

(a) development of the flow field 

(b) growth of a large scale eddy 

Fig. 8. Elementary components of an interface recognized by the 

algorithm. 

Fig. 9. Velocity components used in the advection algorithm to 

determine the motion of the interface in cell (i,j). 

Fig. 10. Kinematics of the flame front 

----- tangent to the fl arne front at point i 

- ~ - - - ~ - tangents to particle paths at point 

Fig. 11. Sequential series of computer plots displaying vortex 

velocity fields and flame fronts in turbulent combustion 

behind a step at R = 10
4 while Su = 0.02 and v = 4.25, 

corresponding to a propane-air mixture at K = 0.5. 

(a) ignition at point (1,1) in a fully developed turbulent 

flow 

(b) "steady state" turbulent flame propagation. 
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